Evidence of Shear-wave Anisotropy in the Upper Crust of Central Italy by G. Iannaccone and A. Deschamps
نویسندگان
چکیده
Shear-wave polarization analysis has been performed on data from twelve earthquakes recorded in central Italy. These data are part of a set of high quality seismograms recorded by a three-component digital network installed in Abruzzo region after a Ms = 5.8 earthquake on 7 May 1984. Analysis performed on 2 to 6 Hz bandpass-filtered seismograms reveals shear-wave splitting. In order to determine the direction for which the time separation between the two split S waves is maximum, the horizontal traces are rotated in the range 10 to 90 ° with steps of 10 ° . At each step the cross-correlation between the two shear waves and the time separation is estimated. The azimuth of 50°N yields the highest correlation coefficient and the maximum time separation of about 0.09 sec. This direction and the orthogonal to it represent axes of minimum and maximum shear-wave velocity respectively. If the time delay is distributed over the whole hypocenter-seismic station path, the maximum variation in velocity is at least 1.4 per cent. The theoretical linear polarization of particle motion at the source is verified after correcting the seismograms for the anisotropic propagation effect. A distribution of vertical cracks aligned in the direction 140°N may explain the observed anisotropy. The stress field deduced from the focal mechanism of the Abruzzo earthquake is compatible with this hypothetical crack distribution.
منابع مشابه
Investigation of the strength and trend of seismic anisotropy beneath the Zagros collision zone
The Zagros collision zone is known as an active tectonic zone that represents the tectonic boundary between the Eurasian and Arabian plates. A popular strategy for gaining insight into the upper mantle processes is to examine the splitting of seismic shear waves and interpret them in terms of upper mantle anisotropy and deformation. Core phases SK(K)S from over 278 earthquakes (MW ≥ ...
متن کاملEstimation of Plunge Value in Single- or Multi-Layered Anisotropic Media Using Analysis of Fast Polarization Direction of Shear Waves
Estimation of the fast polarization direction of shear seismic waves that deviate from horizontal axis is a valuable approach to investigate the characteristics of the lower crust and uppermost mantle structures. The lattice preferred orientation of crystals, which is generally parallel to the downward or upward flow of the mantle or crust, is an important reason for the occurrence of fast axis...
متن کاملAnisotropic seismic structure of the lithosphere beneath the Adriatic coast of Italy constrained with mode-converted body waves
[1] PS converted waves observed near Ancona on the Adriatic coast of central Italy, as revealed by teleseismic receiver functions (RFs), vary with earthquake backazimuth and epicentral distance in a manner consistent with a 1-D anisotropic seismic structure. Using reflectivity calculations, we develop a profile of anisotropic seismic velocity through the Adriatic lithosphere at this locality. W...
متن کاملShear-velocity structure, radial anisotropy and dynamics of the Tibetan crust
S U M M A R Y Geophysical and geological data suggest that Tibetan middle crust is a partially molten, mechanically weak layer, but it is debated whether this low-viscosity layer is present beneath the entire plateau, what its properties are, how it deforms, and what role it has played in the plateau’s evolution. Broad-band seismic surfacewaves yield resolution in the entire depth range of the ...
متن کاملDesign Spectrum for Near Fault Ground Motions Considering Frequency-Dependence of CH/SC Material Behavior Regarding Laboratory and Field Shear Wave Velocity (Vs)
Introduction One-dimensional site response analysis is widely performed to account for local site effects during an earthquake. Most of these approaches assume that dynamic soil properties are frequency independent. Laboratory test results as well as in-situ testing show that shear modulus and damping ratio are dependent on the frequency of loading. Although the amplification factor at ground ...
متن کامل